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Review: Regression

 X: Input (also called features, attributes, covariates, or

predictors)

* Typically, X is a vector, array, or list of numbers or strings.

* Y: Output (also called labels or targets)

* In regression, Y is a real number.
An input-output pairis (X,Y).

_et n, called the data set size, be the number of input-output
nairs in the data set.

et (X;,Y;) denote the i*! input output pair.

* The complete data setis

X, YOI, = ((Xq, Y1), (X5, Ys), v, (X, Y.



Review: Nearest Neighbor (Variants)

* Given a query input Xgyery, find the k nearest points in the training
data.

* Return a weighted average of their labels.
 k = 1is nearest neighbor
* k > 1 with allw; equalis k-nearest neighbor
* k > 1 with not all w; equal is weighted k-nearest neighbor

* These algorithms don’t pre-process the training data much.
* They can build data structures like KD-Trees for efficiency.



Linear Regression

 Search for the line that is a best fit to the data.
* Different performance measures correspond to different ways of
measuring the quality of a fit.

* Sample mean squared error, or the sum of the squared errors
(SSE) is particularly common:

VId R N A\ 2 . N A\ 2
* Although not identical, the line that minimizes one also minimizes the
other.

* Using sample MSE, this method is called “least squares linear
regression.”



Linear Regression: What is a line?

=mx + b

CNTN

Predlctlon y;  Slope,m Input,x; vy-intercept,b

— =

“weights,” or “parameters”, w = (wy,w,)

"\

Yy = wix; + w,



Models (Review)

* Amodelis a mechanism that maps input data to predictions.

* ML algorithms take data sets as input and produce models as
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A query can be one or more feature vectors.

- - -
— -
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'—] ML Algorithm

Predictions are given for

375000 4. = -~ each feature vector in the

2.50000 query.
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Parametric Model

* Amodel “parameterized” by a weight vector w.

* Different settings of w result in different predictions.
*Lety = fu,(x)

 1-dimensional linear case:
fw(X) = wix + w,



Linear Regression: Hyperplanes

* What if we have more than one input feature?

* Letx; = (x;1,%X;2,..,X; q) be a d-dimensionalinput.

* We include the i subscript to make it clear that 1,2,... aren’t referencing
different input vectors, but different elements of one input vector.

* We use a hyperplane:
fw (X)) = wixpq + woxis + o+ WeXig + Waoq.

, , , The offset, bias, or intercept term, which
Slope along the first dimension gives the prediction when the input features

are all zero.
Rate of change of the prediction as

the first feature increases Slope along the second dimension
Rate of change of the prediction as the second feature increases



Linear Regression (cont.)

fw (X)) = wixiq +Wwoxip + ot wgXig + Wagq.

* Thought: We don’t want to have to keep remembering a special
“Iintercept” term.

* Idea: Drop the intercept term!

* |If you want to include the intercept term, add one more feature to your data set,
Xqg+1 = 1.
* If d is the dimension of the input with this additional feature, we then have:
fw(Xi) = wixiq +woxis + o+ wex;g
* We can write this as:

d
fw(x) = 2 W; X; ;.
=1

* This is called a dot product and can be written asw - x; or w’x;.



Linear Regression (cont.)

d
9= fuld) = Y Wi,
=1

* How many weights (parameters) does the model have?
* d, the dimension of any one input vector x;.
* Not n, the number of training data points.
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Linear Regression: Optimization Perspective

* Given a parametric model f,, of any form how can we find the weights w that
result in the “best fit”?

e Let L be afunction called a loss function.
* |ttakes as input a model (or model weights w)

e |talsotakes asinputdata D
* |t produces as output a real-number describing how bad of a fit the model is to the
provided data.

* The evaluation metrics we have discussed can be viewed as loss functions.
For example, the sample M%E loss function Is;

w. D) = 1 o 1 2
(w,D) = Ez(yi — )T = Ez(yi B fw(xl)) For the sample MSE loss
i=1 =1 \ function, this can be any

* We phrase this as an optimization problem: parametric model, not
argmin,, L(w, D) just a linear one!

11



Linear Regression: Optimization Perspective

argmin,, L(w, D)

* Recall: argmin returns the w that achieves the minimum value of
L(w, D), not the minimum value of L(w, D) itself.

* This expression describes a massive range of ML methods.
* Supervised, unsupervised, (batch/offline) RL

* Deep neural networks
* Large language models and generative Al

* Different problem settings and algorithms in ML correspond to:

* Different loss functions
* Different parametric models.
* Different algorithms for approximating the best weight vector w.

12



Least Squares Linear Regression (cont.)

* Find the weights w that minimize

L(w, D) =— Z(yl fur )’

Number of training data points / Dimension of each input vector
/ (number of features per row)

2
L(w, D) = —Z( Zd:wxl]>

j=1

13



Linear Regression: Least Squares Solvers

* How should one solve this problem’?

argmin,,, nz Vi — ijxl j

=1
 Answer: “Least squares solvers”
* Algorithms based on concepts from linear algebra.
* Extremely effective for solving problems of precisely this form.

* Beyond the scope of this class.

* Only useful for this exact problem.
* Not effective when using other parametric models (e.g., not linear)
* Not effective when using other loss functions / performance metrics.

14



Linear Regression

* How do we solve this problem’7

argmin,,, nz Vi — ijxl j

i=1
* We will study a different approach for solving this problem.
* |t /s less efficient.

* [t applies to almost all loss functions and parametric models
of interest.

* Method: Gradient descent.
* Soon we will discuss gradient descent.
* For now, assume we have some way of finding the argmin,, L(w, D).

15



Least Squares Linear Regression

Least Squares Linear Regression
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Linear Regression vs Weighted k-NN for GPA
Prediction

Weighted KNN Model:
Average MSE: 0.571

MSE Standard Error: 0.004 Very simple method achieves

nearly the same performance
as a tuned-version of

Linear Regression Model: weighted k-NN!
Ave rage MSE: 9.582<« Soon, we will consider more
MSE Standard Error: 0.004 complex parametric models

that can be even more
effective.
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Linear Regression Limitation

* What if the relationship between the inputs and outputs is not
linear (or affine)?
* Linear: A1x;1 + Axx; o + -+ Apxi
* Affine: Ayx; 1 +Ayxio+ -+ Apxi, +b

* Equivalent to linear with an additional feature x; ;41 = 1.

* Ildea: Have parametric functions that can represent more than
linear functions!

18



Linear Parametric Model #Linear Functions

 Linear parametric functions are functions f;, (x;) that are linear functions
of the weights w.

* They need not be linear functions of the input x;.

Each feature is a real number
(not a vector or array) Note: Each feature can depend on more than one

Feature 1: element of x;. So, this is ¢, (x;) not ¢ (x; 1)-
- $1(x;)
eature
Inputx; I_’ generator ¢ Feature 2: Linear Regression: Prediction, ;
. . $2(x;) fw(xi) = w11 (x;) + wapo(x;) + -+

Note: The input x; is
avector —an array
of values.

Feature m: Note: This is equivalent to pre-processing the data,

b (x;) converting x; (length d) into ¢p(x;) (length ‘n;ts))




Linear Parametric Model #Linear Functions

 Linear parametric functions are functions f,, (x;) that are linear
functions of the weights w.

* They need not be linear functions of the input x;.
* Thatis, a linear parametric modelTI?las the form:

fw(xi) = 2 wjd;(x;),
=1

where ¢ takes the input vector x; as input and produces a vector of m
features as output. Thatis, ¢;(x;) is the j" feature output by ¢.

* ¢ is called the basis function, feature generator, or feature mapping
function.

20
Note: Explain “basis” on the board. You are not responsible for the material on the board.



Linear Parametric Model

fw(xi) = Z w;p;(x;)
=1

* Polynomial basis
+ If x; € Rthen ¢;(x;) = x! " so that:
() = [1, x5, x7, %7, o, 2P
Here m — 1 is the degree or order of the polynomial basis.
fir () = wy + wox; + wax? + wux; + -+ wpxm !
We are fitting a polynomial to the data!
This is a non-linear function of the input x;

This is a linear function of w.

This can represent any smooth function (if m is big enough).
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Linear Parametric Models (cont.)

* What does it mean for a function g(x, y) to be linear with respect
to aninput, x?
* The slope is constant as x changes.
* The derivative with respect to x is a constant (does not vary with x)

* Is g(x,y) = x%y? linear with respect to (w.r.t.) x?

. agg;’y) = 2xy?, which changes with x, so no.
* Is g(x,y) = xsin(y) linear w.r.t. x?

. agga;,y) = sin(y), which does not change with x, so yes!
* Is fgv(icig = Xiz1wj¢;(x;) linear w.rt. w?

. Jw(Xi

oy ¢;(x;), for all j, which does not change with w, so yes!
J
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Linear Parametric Models (cont.)

e |s fw(xi) — 7;1 Wjd)j (Xl) lil"leaAWQuestion:Whyxi,}[c instead of x; ;?

Mwl) _ym 990

oxi  “I=1 J Oxix for all k* Answer: It’s just a symbol —-it could be
« If ¢ is linear w.r.t. x then yes, otherwise no. a smiley face! It represents an integer.
5 . We already used the symbol j in X;Z,
*|s fW (Xl) = WiWoX;4 linear w.rt. w? and that j is not the same as this
. ofw(xi) _ 2 value, so we call this k.
aw,  V2Xia

* No. ltis linear w.r.t. w; but not linear w.r.t. w.

* Linear w.r.t. w means that the derivative w.r.t. w (a vector) does not depend on w
(a vector).

* Note: The derivative w.r.t. w is This T means “transpose,” which just

lafw(xi) afw(xl-)r '\ means that this should be viewed as a

ow; ~ Ow, column notg row (the elements
stacked vertically rather than

horizontally). This isn’t important for
this course. 23



Linear Parametric Models

Least Squares Linear Regression with Polynomial Fit
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Linear Parametric Model vs Linear Regression vs
Weighted k-NN for GPA Prediction

(20-fold cross-validation)

* Weighted KNN Model:
* Average MSE: 0.571

Recall k-NN

* MSE Standard Error: 0.004 mzﬁm:
* Linear Regression Model: oo -
° Aver‘age MSE: 0.582 1 2 0853430

2 3 0.7p4468
5 0.688330

e« MSE Standard Error: 0.004

* Polynomial Regression Model (Degree 4): e oereses

° Aver‘age MSE: 0.576 5 1000 0581676
« MSE Standard Error: 0.004 75000 0600544

A simple linear model outperforms k-NN (not
quite a well-tuned weighted k-NN)!

25



Linear Parametric Models

* Pros:
* Relatively simple.
* Canrepresent any smooth function (given the right / enough features).
* Can use hand-crafted features.

* Quite efficient to solve for optimal w.
* Canstill use least squares solvers —need not use gradient descent.

* Extremely fast to generate predictions for new inputs
* Compute features, take the dot-product with the weights (take the weighted sum)
* Cons:

 Can be hard to find good features.

* People often think linear parametric models can only represent lines, and
so they think negatively of them.

26



Parametric vs Nonparametric

* ML algorithms are often categorized into parametric and
nonparametric.

* |In general:
* Parametric methods use parameterized functions with weights w.
* Nonparametric methods store the training data or statistics of the training data.
* More precisely
* Parametric:
* Have a fixed number of weights w.
* Tend to make specific assumptions about the form of the function.
* Nonparametric:
* Do not make explicitassumptions about the form of the function.
* Number of values stored tends to vary with the amount of training data (e.g., storing data).
* There is some debate about whether some methods are parametric or
nonparametric.

* Linear regression and regression with linear parametric are canonical examples of
parametric.

* Nearest neighbor algorithms are canonical examples of nonparametric.

27



Multivariate Polynomial Basis

* How does the polynomial basis, ¢, work if x is multidimensional (an array
rather than a number?)

* Multivariate polynomial on inputs x, y:
a+ bx+cy+dxy+ex®+ fy*+ gxy® + hx?y +ix> + -

 Multivariate polynomial on input x; 4, x; :
Wi+ WoX;1 + W3Xjo + WyX;1X;p T WSxfl + W6x52 + W7xl-’1xl-2,2 + ngflxi%z + ngfl + -
* The expression above is f,,(x;) for a linear parametric model using the
multivariate polynomial basis.

* Notice that some ¢;(x;) terms depend on more than one element of x;!
* This termis wgg(x;)

28



Fourier Basis

* Each ¢; is a cosine function with a different period.
 Can optionally include both sine and cosine functions.

* Univariate:
* ¢j(x;) = cos(jmx) if j € {0,1, ...}
* ¢i(x;) = cos((j — 1)7Tx) ifj €{1,2,...}
* Approximation of a step function (from Wikipedia “Fourier series”
page)

29



Fourier Basis (Multivariate)

Figure 3: A few example Fourier basis functions defined
over two state variables. Lighter colors indicate a value
closer to 1, darker colors indicate a value closer to —1.
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Feature Engineering

* |[n some cases, you can hand-craft features

* Examples:
* Average STEM score
* Average non-STEM score

* Question: Why might these not be good features?

* Answer: They do not change the functions that can be
represented!

* Aweight of w; on STEM score equates to 2 being added to the weights on
4
each of the four STEM exams.

* Effective features are not linear combinations of existing features.

31



Serating

Thank you.

Degginmenic
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