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Review: Regression

• 𝑋: Input (also called features, attributes, covariates, or 
predictors)
• Typically, 𝑋 is a vector, array, or list of numbers or strings.

• 𝑌: Output (also called labels or targets)
• In regression, 𝑌 is a real number.

•  An input-output pair is (𝑋, 𝑌).
• Let 𝑛, called the data set size, be the number of input-output 

pairs in the data set.
• Let 𝑋𝑖 , 𝑌𝑖  denote the 𝑖th input output pair.
• The complete data set is 

𝑋𝑖 , 𝑌𝑖 𝑖=1
𝑛 = 𝑋1, 𝑌1 , 𝑋2, 𝑌2 , … , 𝑋𝑛, 𝑌𝑛 .
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Review: Nearest Neighbor (Variants)

• Given a query input 𝑥query, find the 𝑘 nearest points in the training 
data.

• Return a weighted average of their labels.
• 𝑘 = 1 is nearest neighbor
• 𝑘 > 1 with all 𝑤𝑖  equal is k-nearest neighbor
• 𝑘 > 1 with not all 𝑤𝑖  equal is weighted k-nearest neighbor

• These algorithms don’t pre-process the training data much.
• They can build data structures like KD-Trees for efficiency.
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Linear Regression

• Search for the line that is a best fit to the data.
• Different performance measures correspond to different ways of 

measuring the quality of a fit.
• Sample mean squared error, or the sum of the squared errors 

(SSE) is particularly common:
෣MSE𝑛:

1

𝑛
σ𝑖=1

𝑛 𝑦𝑖 − ො𝑦𝑖
2 and SSE: σ𝑖=1

𝑛 𝑦𝑖 − ො𝑦𝑖
2 

• Although not identical, the line that minimizes one also minimizes the 
other.

• Using sample MSE, this method is called “least squares linear 
regression.”
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Linear Regression: What is a line?

𝑦 = 𝑚𝑥 + 𝑏

ො𝑦 = 𝑤1𝑥𝑖 + 𝑤2

Prediction, ෝ𝑦𝑖 Input, 𝑥𝑖Slope, 𝑚 y-intercept, 𝑏

“weights,” or “parameters”, 𝑤 = 𝑤1, 𝑤2
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Models (Review)

• A model is a mechanism that maps input data to predictions.
• ML algorithms take data sets as input and produce models as 

output.

ML Algorithm Model

Data Set

Query

Prediction

A query can be one or more feature vectors.

Predictions are given for 
each feature vector in the 
query.
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Parametric Model

• A model “parameterized” by a weight vector 𝑤.
• Different settings of 𝑤 result in different predictions.
• Let ො𝑦 =  𝑓𝑤 𝑥

• 1-dimensional linear case:
𝑓𝑤(𝑥) = 𝑤1𝑥 + 𝑤2
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Linear Regression: Hyperplanes

• What if we have more than one input feature?
• Let 𝑥𝑖 = (𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,𝑑) be a 𝑑-dimensional input.

• We include the 𝑖 subscript to make it clear that 1,2,… aren’t referencing 
different input vectors, but different elements of one input vector.

• We use a hyperplane:
𝑓𝑤 𝑥𝑖 = 𝑤1𝑥𝑖,1 + 𝑤2𝑥𝑖,2 +  … + 𝑤𝑑𝑥𝑖,𝑑 + 𝑤𝑑+1.

Slope along the first dimension

Rate of change of the prediction as 
the first feature increases Slope along the second dimension

Rate of change of the prediction as the second feature increases

The offset, bias, or intercept term, which 
gives the prediction when the input features 
are all zero.
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Linear Regression (cont.)

𝑓𝑤 𝑥𝑖 = 𝑤1𝑥𝑖,1 + 𝑤2𝑥𝑖,2 +  … + 𝑤𝑑𝑥𝑖,𝑑 + 𝑤𝑑+1.

• Thought: We don’t want to have to keep remembering a special 
“intercept” term.

• Idea: Drop the intercept term!
• If you want to include the intercept term, add one more feature to your data set, 

𝑥𝑑+1 = 1.
• If 𝑑 is the dimension of the input with this additional feature, we then have:

𝑓𝑤 𝑥𝑖 = 𝑤1𝑥𝑖,1 + 𝑤2𝑥𝑖,2 +  … + 𝑤𝑑𝑥𝑖,𝑑

• We can write this as:

𝑓𝑤 𝑥𝑖 = ෍

𝑗=1

𝑑

𝑤𝑗  𝑥𝑖,𝑗 .

• This is called a dot product and can be written as 𝑤 ⋅ 𝑥𝑖  or 𝑤𝑇𝑥𝑖.
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Linear Regression (cont.)

ෝ𝑦𝑖 = 𝑓𝑤 𝑥𝑖 = ෍

𝑗=1

𝑑

𝑤𝑗  𝑥𝑖,𝑗

• How many weights (parameters) does the model have?
• 𝑑, the dimension of any one input vector 𝑥𝑖.
• Not 𝑛, the number of training data points.
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Linear Regression: Optimization Perspective

• Given a parametric model 𝑓𝑤  of any form how can we find the weights 𝑤 that 
result in the “best fit”?

• Let 𝐿 be a function called a loss function.
• It takes as input a model (or model weights 𝑤)
• It also takes as input data 𝐷
• It produces as output a real-number describing how bad of a fit the model is to the 

provided data.
• The evaluation metrics we have discussed can be viewed as loss functions. 

For example, the sample MSE loss function is:

𝐿 𝑤, 𝐷 =
1

𝑛
෍

𝑖=1

𝑛

𝑦𝑖 − ො𝑦𝑖
2 =

1

𝑛
෍

𝑖=1

𝑛

𝑦𝑖 − 𝑓𝑤 𝑥𝑖
2

• We phrase this as an optimization problem:
argmin𝑤 𝐿(𝑤, 𝐷) 

For the sample MSE loss 
function, this can be any 
parametric model, not 
just a linear one!

11



Linear Regression: Optimization Perspective

argmin𝑤 𝐿(𝑤, 𝐷)

• Recall: argmin returns the 𝑤 that achieves the minimum value of 
𝐿(𝑤, 𝐷), not the minimum value of 𝐿(𝑤, 𝐷) itself.

• This expression describes a massive range of ML methods.
• Supervised, unsupervised, (batch/offline) RL
• Deep neural networks
• Large language models and generative AI

• Different problem settings and algorithms in ML correspond to:
• Different loss functions
• Different parametric models.
• Different algorithms for approximating the best weight vector 𝑤.
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Least Squares Linear Regression (cont.)

• Find the weights 𝑤 that minimize

𝐿 𝑤, 𝐷 =
1

𝑛
෍

𝑖=1

𝑛

𝑦𝑖 − 𝑓𝑤 𝑥𝑖
2

𝐿 𝑤, 𝐷 =
1

𝑛
෍

𝑖=1

𝑛

𝑦𝑖 − ෍

𝑗=1

𝑑

𝑤𝑗𝑥𝑖,𝑗

2

Number of training data points Dimension of each input vector
(number of features per row)
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Linear Regression: Least Squares Solvers

• How should one solve this problem?

argmin𝑤

1

𝑛
෍

𝑖=1

𝑛

𝑦𝑖 − ෍

𝑗=1

𝑑

𝑤𝑗𝑥𝑖,𝑗

2

• Answer: “Least squares solvers”
• Algorithms based on concepts from linear algebra.
• Extremely effective for solving problems of precisely this form.
• Beyond the scope of this class.
• Only useful for this exact problem.

• Not effective when using other parametric models (e.g., not linear)
• Not effective when using other loss functions / performance metrics.
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Linear Regression

• How do we solve this problem?

argmin𝑤

1

𝑛
෍

𝑖=1

𝑛

𝑦𝑖 − ෍

𝑗=1

𝑑

𝑤𝑗𝑥𝑖,𝑗

2

• We will study a different approach for solving this problem.
• It is less efficient.
• It applies to almost all loss functions and parametric models 

of interest.
• Method: Gradient descent.

• Soon we will discuss gradient descent.
• For now, assume we have some way of finding the argmin𝑤𝐿(𝑤, 𝐷).
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Least Squares Linear Regression
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Linear Regression vs Weighted k-NN for GPA 
Prediction
Weighted KNN Model:

 Average MSE: 0.571 

 MSE Standard Error: 0.004 

Linear Regression Model: 

 Average MSE: 0.582 

 MSE Standard Error: 0.004

Very simple method achieves 
nearly the same performance 
as a tuned-version of 
weighted k-NN!

Soon, we will consider more 
complex parametric models 
that can be even more 
effective.
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Linear Regression Limitation

• What if the relationship between the inputs and outputs is not 
linear (or affine)?
• Linear: 𝐴1𝑥𝑖,1 + 𝐴2𝑥𝑖,2 + ⋯ + 𝐴𝑛𝑥𝑖,𝑛

• Affine: 𝐴1𝑥𝑖,1 + 𝐴2𝑥𝑖,2 + ⋯ + 𝐴𝑛𝑥𝑖,𝑛 + 𝑏
• Equivalent to linear with an additional feature 𝑥𝑖,𝑛+1 = 1.

• Idea: Have parametric functions that can represent more than 
linear functions!
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Linear Parametric Model ≠Linear Functions

• Linear parametric functions are functions 𝑓𝑤 𝑥𝑖  that are linear functions 
of the weights 𝒘.

• They need not be linear functions of the input 𝑥𝑖.

Input 𝑥𝑖
Feature 

generator 𝜙

Note: The input 𝑥𝑖  is 
a vector – an array 
of values.

Feature 1: 
𝜙1 𝑥𝑖

Feature 2: 
𝜙2 𝑥𝑖

Feature m: 
𝜙𝑚 𝑥𝑖

…

Each feature is a real number 
(not a vector or array)

Linear Regression:
𝑓𝑤 𝑥𝑖 = 𝑤1𝜙1 𝑥𝑖 + 𝑤2𝜙2 𝑥𝑖 + ⋯

Prediction, ො𝑦𝑖

Note: This is equivalent to pre-processing the data, 
converting 𝑥𝑖  (length 𝑑) into 𝜙 𝑥𝑖   (length 𝑚)

Note: Each feature can depend on more than one 
element of 𝑥𝑖. So, this is 𝜙1 𝑥𝑖  not 𝜙1 𝑥𝑖,1 .
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Linear Parametric Model ≠Linear Functions

• Linear parametric functions are functions 𝑓𝑤 𝑥𝑖  that are linear 
functions of the weights 𝒘.

• They need not be linear functions of the input 𝑥𝑖.
• That is, a linear parametric model has the form:

𝑓𝑤 𝑥𝑖 = ෍

𝑗=1

𝑚

𝑤𝑗𝜙𝑗 𝑥𝑖 ,

where 𝜙 takes the input vector 𝑥𝑖  as input and produces a vector of 𝑚 
features as output. That is, 𝜙𝑗 𝑥𝑖  is the 𝑗th feature output by 𝜙.

• 𝜙 is called the basis function, feature generator, or feature mapping 
function. 

20
Note: Explain “basis” on the board. You are not responsible for the material on the board.



Linear Parametric Model

𝑓𝑤 𝑥𝑖 = ෍

𝑗=1

𝑚

𝑤𝑗𝜙𝑗 𝑥𝑖

• Polynomial basis
• If 𝑥𝑖 ∈ ℝ then 𝜙𝑗 𝑥𝑖 = 𝑥𝑖

𝑗−1 so that:
𝜙 𝑥𝑖 = 1, 𝑥𝑖 , 𝑥𝑖

2, 𝑥𝑖
3, … , 𝑥𝑖

𝑚−1

• Here 𝑚 − 1 is the degree or order of the polynomial basis.
• 𝑓𝑤 𝑥𝑖 = 𝑤1 + 𝑤2𝑥𝑖 + 𝑤3𝑥𝑖

2 + 𝑤4𝑥𝑖
3 + ⋯ + 𝑤𝑚𝑥𝑖

𝑚−1

• We are fitting a polynomial to the data!
• This is a non-linear function of the input 𝑥𝑖

• This can represent any smooth function (if 𝑚 is big enough).
• This is a linear function of 𝑤.
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Linear Parametric Models (cont.)

• What does it mean for a function 𝑔(𝑥, 𝑦) to be linear with respect 
to an input, 𝑥?
• The slope is constant as 𝑥 changes.
• The derivative with respect to 𝑥 is a constant (does not vary with 𝑥)

• Is 𝑔 𝑥, 𝑦 = 𝑥2𝑦2 linear with respect to (w.r.t.) 𝑥?
•

𝜕𝑔 𝑥,𝑦

𝜕𝑥
= 2𝑥𝑦2, which changes with 𝑥, so no.

• Is 𝑔 𝑥, 𝑦 = 𝑥 sin(𝑦) linear w.r.t. 𝑥?
•

𝜕𝑔 𝑥,𝑦

𝜕𝑥
= sin 𝑦 , which does not change with 𝑥, so yes!

• Is 𝑓𝑤 𝑥𝑖 = σ𝑗=1
𝑚 𝑤𝑗𝜙𝑗 𝑥𝑖  linear w.r.t. 𝑤?

•
𝜕𝑓𝑤 𝑥𝑖

𝜕𝑤𝑗
= 𝜙𝑗 𝑥𝑖 , for all 𝑗, which does not change with 𝑤, so yes!
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Linear Parametric Models (cont.)

• Is 𝑓𝑤 𝑥𝑖 = σ𝑗=1
𝑚 𝑤𝑗𝜙𝑗 𝑥𝑖  linear w.r.t. 𝑥?

•
𝜕𝑓𝑤 𝑥𝑖

𝜕𝑥𝑖,𝑘
= σ𝑗=1

𝑚 𝑤𝑗
𝜕𝜙𝑗 𝑥𝑖

𝜕𝑥𝑖,𝑘
, for all 𝑘. 

• If 𝜙 is linear w.r.t. 𝑥 then yes, otherwise no.

• Is 𝑓𝑤 𝑥𝑖 = 𝑤1𝑤2𝑥𝑖,1
2  linear w.r.t. 𝑤?

•
𝜕𝑓𝑤 𝑥𝑖

𝜕𝑤1
= 𝑤2𝑥𝑖,1

2

• No. It is linear w.r.t. 𝑤1 but not linear w.r.t. 𝑤.
• Linear w.r.t. 𝑤 means that the derivative w.r.t. 𝑤 (a vector) does not depend on 𝑤 

(a vector).
• Note: The derivative w.r.t. 𝑤 is

𝜕𝑓𝑤 𝑥𝑖

𝜕𝑤1
,
𝜕𝑓𝑤 𝑥𝑖

𝜕𝑤2

𝑇
This T means “transpose,” which just 
means that this should be viewed as a 
column not a row (the elements 
stacked vertically rather than 
horizontally). This isn’t important for 
this course. 23

Question: Why 𝑥𝑖,𝑘  instead of 𝑥𝑖,𝑗?

Answer: It’s just a symbol – it could be 
a smiley face! It represents an integer. 
We already used the symbol 𝑗 in Σ𝑗=1

𝑚 , 
and that 𝑗 is not the same as this 
value, so we call this 𝑘.



Linear Parametric Models
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Linear Parametric Model vs Linear Regression vs 
Weighted k-NN for GPA Prediction
(20-fold cross-validation)
• Weighted KNN Model:

• Average MSE: 0.571 

• MSE Standard Error: 0.004 

• Linear Regression Model: 
• Average MSE: 0.582 

• MSE Standard Error: 0.004 

• Polynomial Regression Model (Degree 4):
• Average MSE: 0.576 

• MSE Standard Error: 0.004

Recall k-NN
results:

A simple linear model outperforms k-NN (not 
quite a well-tuned weighted k-NN)!
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Linear Parametric Models

• Pros:
• Relatively simple.
• Can represent any smooth function (given the right / enough features).
• Can use hand-crafted features.
• Quite efficient to solve for optimal 𝑤.

• Can still use least squares solvers – need not use gradient descent.
• Extremely fast to generate predictions for new inputs

• Compute features, take the dot-product with the weights (take the weighted sum)

• Cons:
• Can be hard to find good features.
• People often think linear parametric models can only represent lines, and 

so they think negatively of them.
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Parametric vs Nonparametric

• ML algorithms are often categorized into parametric and 
nonparametric.
• In general:

• Parametric methods use parameterized functions with weights 𝑤.
• Nonparametric methods store the training data or statistics of the training data.

• More precisely
• Parametric:

• Have a fixed number of weights 𝑤.
• Tend to make specific assumptions about the form of the function.

• Nonparametric:
• Do not make explicit assumptions about the form of the function.
• Number of values stored tends to vary with the amount of training data (e.g., storing data).

• There is some debate about whether some methods are parametric or 
nonparametric.
• Linear regression and regression with linear parametric are canonical examples of 

parametric.
• Nearest neighbor algorithms are canonical examples of nonparametric.

27



Multivariate Polynomial Basis

• How does the polynomial basis, 𝜙, work if 𝑥 is multidimensional (an array 
rather than a number?)

• Multivariate polynomial on inputs 𝑥, 𝑦:
𝑎 + 𝑏𝑥 + 𝑐𝑦 + 𝑑𝑥𝑦 + 𝑒𝑥2 + 𝑓𝑦2 + 𝑔𝑥𝑦2 + ℎ𝑥2𝑦 + 𝑖𝑥3 + ⋯

• Multivariate polynomial on input 𝑥𝑖,1, 𝑥𝑖,2:
𝑤1 + 𝑤2𝑥𝑖,1 + 𝑤3𝑥𝑖,2 + 𝑤4𝑥𝑖,1𝑥𝑖,2 + 𝑤5𝑥𝑖,1

2 + 𝑤6𝑥𝑖,2
2 + 𝑤7𝑥𝑖,1𝑥𝑖,2

2 + 𝑤8𝑥𝑖,1
2 𝑥𝑖,2

2 + 𝑤9𝑥𝑖,1
3 + ⋯

• The expression above is 𝑓𝑤 𝑥𝑖  for a linear parametric model using the 
multivariate polynomial basis.

• Notice that some 𝜙𝑗 𝑥𝑖  terms depend on more than one element of 𝑥𝑖!
• This term is 𝑤8𝜙8 𝑥𝑖
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Fourier Basis

• Each 𝜙𝑗  is a cosine function with a different period.
• Can optionally include both sine and cosine functions.

• Univariate:
• 𝜙𝑗 𝑥𝑖 = cos(𝑗𝜋𝑥) if 𝑗 ∈ 0,1, …

• 𝜙𝑗 𝑥𝑖 = cos 𝑗 − 1 𝜋𝑥  if 𝑗 ∈ 1,2, …

• Approximation of a step function (from Wikipedia “Fourier series” 
page)
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Fourier Basis (Multivariate)
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Feature Engineering 

• In some cases, you can hand-craft features
• Examples:

• Average STEM score
• Average non-STEM score

• Question: Why might these not be good features?
• Answer: They do not change the functions that can be 

represented!
• A weight of 𝑤𝑗  on STEM score equates to 

𝑤𝑗

4
 being added to the weights on 

each of the four STEM exams.
• Effective features are not linear combinations of existing features.

31



End
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